
Basis Function Construction For Hierarchical
Reinforcement Learning

Sarah Osentoski
Department of Computer Science

Brown University
115 Waterman St., 4th Flr

Providence, RI 02912
sosentos@cs.brown.edu

Sridhar Mahadevan
Department of Computer Science

University of Massachusetts, Amherst
140 Governor’s Drive
Amherst, MA 01003

mahadeva@cs.umass.edu

ABSTRACT
Much past work on solving Markov decision processes (MDPs) us-
ing reinforcement learning (RL) has relied on combining parame-
ter estimation methods with hand-designed function approximation
architectures for representing value functions. Recently, there has
been growing interest in a broader framework that combines repre-
sentation discovery and control learning, where value functions are
approximated using a linear combination of task-dependent basis
functions learned during the course of solving a particular MDP.
This paper introduces an approach to automatic basis function con-
struction for hierarchical reinforcement learning (HRL). Our ap-
proach generalizes past work on basis construction to multi-level
action hierarchies by forming a compressed representation of a
semi-Markov decision process (SMDP) at multiple levels of tem-
poral abstraction. The specific approach is based on hierarchical
spectral analysis of graphs induced on an SMDP’s state space from
sample trajectories. We present experimental results on benchmark
SMDPs, showing significant speedups when compared to hand-
designed approximation architectures.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Representation Discovery, Hierarchical Reinforcement Learning,
Semi-Markov Decision Processes.

1. INTRODUCTION
Most successful applications of autonomous decision-making and

learning models, such as Markov decision processes (MDPs) and
reinforcement learning (RL), rely on hand-designed approximation
architectures to compress the solution space to a low-dimensional
subspace. Recently there has been growing interest in a broader
framework combining representation discovery and control learn-
ing [7, 8, 10, 12], where parameter estimation methods are com-
bined with feature construction techniques that automatically con-

Cite as: Basis Function Construction For Hierarchical Reinforcement
Learning, Sarah Osentoski and Sridhar Mahadevan, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

struct a function approximator during the course of solving a spe-
cific MDP. While promising results have been obtained in some
benchmark MDPs, the larger question of how to scale these com-
bined representation discovery and control learning methods re-
mains open. Hierarchical reinforcement learning (HRL) approaches
such as HAMs [11], options [13], and MAXQ [5] have been pro-
posed to scale RL to large domains. HRL techniques are based
on the semi-Markov decision process (SMDP) model, where an
agent does not need to make decisions at each time step but instead
can execute temporally-extended actions. This paper addresses the
problem of scaling a unified representation discovery and control
learning framework to large SMDPs, by exploiting the hierarchi-
cal structure of tasks. Past work on HRL has invariably assumed
that value functions for each subtask are stored using table lookup.
By combining methods for automatic basis construction with HRL
methods, such as MAXQ, we show how a hierarchical function ap-
proximator can be automatically formed based on a specified task
hierarchy.

Our approach constructs basis functions at multiple levels of ab-
straction. We focus on a spectral approach, in which basis functions
are constructed by analyzing graphs induced on an MDP’s state
space from sample trajectories. In particular, basis functions corre-
spond to the low-order eigenvectors of the graph Laplacian [8]. The
graph Laplacian has been used extensively in machine learning, for
problems ranging from dimensionality reduction to spectral cluster-
ing. The graph Laplacian approach to basis function construction
uses a graph to reflect the topology of the state space of the underly-
ing MDP. Spectral graph analysis is then used to construct compact
representations of smooth functions on the underlying state space.
We specifically address the problem of automatic basis construc-
tion for SMDPs specified using multi-level task hierarchies. Given
an SMDP M and a task hierarchy H , the agent must automatically
construct a low-dimensional representation Φ of M . The construc-
tion method should leverage H to create a compact representation
Φ that respects the hierarchy. Φ should be constructed such that the
solution to M calculated using Φ closely approximates the solution
of the original SMDP M consistent with H .

2. HIERARCHICAL REINFORCEMENT
LEARNING

Hierarchical reinforcement learning is a sample-based frame-
work for solving SMDPs that finds the “best” policy consistent with
a given hierarchy [1]. These algorithms enable agents to construct
hierarchical policies that allow using multi-step actions as “subrou-
tines.” HRL algorithms can be described using the SMDP frame-
work. SMDPs are a generalization of MDPs in which actions are
no longer assumed to take a single time step and may have varied

747

747-754



durations. An SMDP can be seen as representing the system at de-
cision points, while an MDP represents the system at all times. An
SMDP is defined as a tuple M = (S, A, P, R). S is the set of
states, and A is the set of actions the agent may take at a decision
point. P is a transition probability function, where P (s′, N |s, a)
denotes the probability that action a taken in state s will cause a
transition to state s′ in N time steps. Rewards can accumulate over
the entire duration of an action. The reward function R(s′, N |s, a)
is the expected reward received from selecting action a in state s
and transitioning to state s′ with a duration of N time steps.

2.1 An Example SMDP
The Taxi task [4], which we use as an example SMDP through-

out this paper, is pictured in Figure 1a. The task is defined as a grid
of 25 states with four colored locations, red (R), green (G), yellow
(Y), and blue (B). The agent must pick up the passenger located
on one of the colored locations and drop the passenger at the de-
sired destination. Each state can be written as a vector of variables
containing the location of the taxi, the passenger location, and the
passenger destination. There are six primitive actions: north, east,
south, west, pickup, and putdown. Each action receives a reward
of −1. If the passenger is putdown at the intended destination, a
reward of +20 is given. If the taxi executes pickup or putdown in-
correctly, a reward of −10 is received. If the taxi runs into the wall,
it remains in the same state.

(a) Taxi Domain.

Root

Get Put

Pickup Putdown
Navigate

(p)

North East South West

p:source p:destination

(b) Hierarchy for the Taxi Domain

Figure 1: Taxi domain and the task hierarchy for this domain.

The task hierarchy is pictured in Figure 1b. The root node is
defined over all states and decomposes into one of two subtasks,
get and put. The get action can only be selected when the passenger
is not located in the taxi and the put action can only be selected
when the passenger is located in the taxi. No learning occurs at
the root subtask because each state has only one abstract action
available to it at any given time. The get action only considers
the taxi location and the passenger location. It has access to two
actions, navigate(p), and pickup. The put action considers only the
taxi location and the passenger destination, and has access to two
actions: navigate(p), and putdown. The navigate action takes as
input a parameter p that indicates which of the 4 locations it can
navigate to and has access to the 4 navigation actions.

One reason HRL is effective is that value functions can be de-
composed using the task hierarchy. The intuition behind our ap-
proach to representation discovery for HRL problems is to con-
struct hierarchical basis functions that decompose in an analogous
manner. Figure 2a shows how the Q-value function decomposes
in MAXQ into two parts: Va(s), the expected sum of rewards ob-
tained for executing action a and the completion function Ci(s, a),
the expected cumulative reward for completing subtask i follow-

ing the current policy πi after action a is taken in state s. In order

. . .r1 r   r    r   r   r
2 3 4 5 6

r      r 
2019

r    r    r    r  
18171615

V (s)
root

V  (s)
get

V  (s)
nav

V (s)
N

C  (s, a  )
root get

C  (s, a )
nav N

C (s, a )
get nav

(a) Value function decomposition using
the task hierarchy for the Taxi task.

root
�(s)

get
�(s)

root
�(s)

get
�(s)

nav
�(s)

nav
�(s)

N
�(s)

(b) Representation decomposition based
on the task hierarchy for the Taxi task.

Figure 2: We explore an approach to basis function construction
that exploits the value function decomposition defined by a fixed
task hierarchy.

to scale, the representations created for HRL problems should de-
compose recursively in a similar manner. Lower level representa-
tions can be reused when constructing basis functions at a higher
level. Figure 2b illustrates how the basis functions decompose for
the Taxi task. For a subtask i, the basis functions for state s decom-
pose into two parts: φ̄i(s), the “local” basis functions constructed
at subtask i and φa(s), the basis functions from child subtasks,
where a is one of the child subtasks. In this work, φ̄i(s) is au-
tomatically constructed using spectral analysis of a graph Gi that
is built from the agent’s experience for subtask i. However, other
automatic basis function construction approaches, such as Bellman
error basis functions [10], could be used.

2.2 Task Hierarchies for HRL
A task hierarchy decomposes an SMDP M into a set of subtasks

{M0, M1, ..., Mn}, which can be modeled as “simpler” SMDPs.
M0 is the root subtask that solves M . A subtask is defined to be
a tuple Mi = (βi, Ai, R̃i). βi(s) is the termination predicate that
partitions S into a set of active states Si and a set of terminal states
βi. The policy πi for Mi can only be executed if the current state
s ∈ Si. Ai is a set of actions that can be performed to achieve
subtask Mi. Actions can either be a primitive action from A or
another subtask. A subtask invoked from Mi is called a child of
subtask i. No subtask can call itself either directly or indirectly.
R̃i(s) is a deterministic “pseudo-reward” function specific to Mi.

748



Task hierarchies may also have parameterized subtasks. If Mj is
a parameterized subtask, it is as if this task occurs many times in
the action space Ai of the parent task Mi. Each parameter of Mj

specifies a distinct task. βi and R̃i are redefined as βi(s, p) and

R̃i(s
′, p), where p is the parameter value. If a subtask’s param-

eter has many values, it is the same as creating a large number of
subtasks, which must all be learned. It also increases the size of Ai.

A hierarchical policy π = {π0, . . . , πm} is a set containing a
policy for each subtask in the task hierarchy. In each subtask, πi

takes a state and returns a primitive action or subtask to be exe-
cuted. P π

i (s′, N |s, a) is the probability transition function for a
hierarchical policy at level i, where s, s′ ∈ Si and a ∈ Ai.

2.3 Hierarchical State Abstraction
Task hierarchies allow state abstractions to occur through an ab-

straction function χ. Each state s can be written as a vector of
variables X . Xi is the subset of state variables that are relevant to
subtask i. Xi,j is the jth variable for subtask i. A state xi defines
a value xi,j ∈ Dom(Xi,j) for each variable Xi,j . χi maps a state
s onto only the variables in Xi.

Abstractions allow the agent to use a state-abstracted task hier-
archy. Given an MDP M and a task hierarchy H , the state variables
for each subtask i can be partitioned into two sets Xi and Yi, where
Yi is the set of state variables irrelevant to the task. χi projects s
onto only the values of the variables in Xi. When combined with
χ, H is called a state-abstracted task hierarchy.

A state-abstracted task hierarchy reduces the size of the learn-
ing problem because an abstract hierarchical policy can be defined
over the reduced space. For an MDP M with a state-abstracted
task hierarchy H and χ, an abstract hierarchical policy is a hierar-
chical policy in which each subtask i has a policy πi that satisfies
the following condition: for any two states s1 and s2 such that
χi(s1) = χi(s2) then πi(s1) = πi(s2).

2.4 Solving HRL tasks
Each subtask Mi has a value function Qi(s, a) that defines the

value of taking an action a in state s according to the real reward
function R. Qi(s, a) is used to derive a policy πi, typically by
selecting the action with the maximum Q value for s.

In the MAXQ framework [4] the value function is decomposed
based upon the hierarchy. MAXQ defines Qi recursively as
Qi(s, a) = Va(s) + Ci(s, a) where

Vi(s) =

j
maxa Qi(s, a) if i is composite
Vi(s) if i is primitive.

Va(s) is the expected sum of rewards obtained while executing
action a. The completion function Ci(s, a) is the expected dis-
counted cumulative reward for subtask i following the current pol-
icy πi after action a is taken in state s. C̃ is the completion function
that incorporates both R̃i and R, and is used only inside the subtask
to calculate the optimal policy of subtask i. Q̃i is used to select the
action and defined as Q̃i(s, a) = Va(s) + C̃i(s, a). If R̃i is zero,

then C and C̃ will be identical.

2.4.1 Function Approximation for HRL
When performing function approximation in HRL, each subtask

has a set of basis functions Φi and a set of weights θi that are used
to calculate the value function Q. φi(s, a) is a k length feature
vector for state s and action a. In MAXQ, the completion function
for subtask i at time t, Ci,t(s, a), is approximated by Ĉi,t(s, a) =Pk

j=1 φi,j(s, a)θi,j,t. The update rule for the parameters is given

as θi,(t+N) = θi,t + αi[γ
N (maxa′∈A(s′) Ĉi,t(s

′, a′|θi,t) +

Va′,t(s
′)) − Ĉi,t(s, a|θi,t)] · φi(s, a).

In our experiments we use Q(λ) learning with replacing traces.
The update rules for this are: θi,(t+N) = θi,t + αδi,tei,twhere

ei,t = γNλei,t−N + φi(s, a), e0 = 0 and

δi,t =γN(max
a′∈A(s′)

Ĉi,t(s
′, a′|θi,t)+Va′,t(s

′))−Ĉi,t(s, a|θi,t) (1)

δ̃i,t = γN(R̃(s, a)+ max
a′∈A(s′)

ˆ̃Ci,t(s
′, a′|θ̃i,t)+Va′,t(s

′))−
ˆ̃Ci,t(s, a|θ̃i,t).

3. AUTOMATIC BASIS FUNCTION
CONSTRUCTION FOR HRL

Our approach to automatic basis function construction for mul-
tilevel task hierarchies uses the graph Laplacian approach [8]. In
this approach the agent constructs basis functions by first explor-
ing the environment and collecting a set of samples. The samples
are used to create a graph where the vertices are states and edges
are actions. Basis functions are created by calculating the eigen-
vectors of the Laplacian of the graph. We extend this approach to
multi-level task hierarchies.

Our approach is divided into three steps. The first step constructs
a graph for each subtask from the agent’s experience. We show how
graph construction can leverage the abstractions provided with the
task hierarchy. The second step constructs a reduced graph based
upon the graph structure. The third step recursively constructs basis
functions using basis functions from child subtasks as well as using
the eigenvectors of the graph Laplacian from the reduced graph.
Algorithm 1 describes the overall algorithm for combining HRL
with representation discovery.

Algorithm 1 HRL-RD (Subtask i, State s, Initial Samples D,
Number of basis functions ki, Initial Policy π0,i, γ, λ, ε)

if i is a primitive subtask then
execute i, receive r, and observe the next state s′

Vt+1,i(s) := (1 − αt(i)) · Vt(i, s) + αi(t) · rt

RETURN s′, 1
else

if first time executing i then
Call BasisConstruction(i,D, ki, π0,i) in Algorithm 2

end if
�e = 0, N̄ = 0
while βi(s) is false do

a∗ = argmaxa′ [Q̃i,t(s
′, a′|θi,t)]

choose an action a according to the current policy πi

if a = a∗ then
ei = γNλei

else
ei = 0

end if
ei = ei + φi(s, a)
(s′, N) = HRL-RD(a, s)
Use update rules from Equation 1
θi,(t+N) = θi,t + αiδei

θ̃i,(t+N) = θ̃i,t + αδ̃ei

s = s′

N̄ = N̄ + N
return s′, N̄

end while
end if

749



3.1 Graph Creation for Task Hierarchies
The first step in our approach to representation discovery for

multi-level task hierarchies is to perform sample collection, such
that each subtask i has a set of samples Di. Each sample in Di

consists of a state, action, reward, and next state, (s, a, r, s′). The
agent constructs a graph from Di. The agent can leverage a state-
abstracted task hierarchy by building the graph in the abstract space
defined by χi. The graph is built such that χi(s1) is connected to
χi(s2), if the agent experienced a transition from χi(s1) to χi(s2)
in Di. We call a graph constructed over the abstract state space
a state-abstracted graph. Figure 2 describes how a graph can be
created; this approach is similar to the approach in Osentoski and
Mahadevan [9] but uses the abstraction function χ.

For an MDP M with a state-abstracted task hierarchy, a state-
abstracted graph Gi can be constructed for subtask i over the ab-
stract state space defined by χi. The vertices V correspond to the
set, or subset, of abstract states χi(S). An edge exists between v1

and v2 if there is an action a ∈ Ai that causes a transition between
the corresponding abstract states.

Algorithm 2 BasisConstruction (Subtask i, Samples D, Number of
local basis functions ki, Initial policy π0)

Sample Collection:

1. Exploration: Generate a set of samples Di which consists
of a state, action, reward, and nextstate, (s, a, r, s′, N) for
subtask, i according to π0. N is the number of steps a
took to complete.

2. Subsampling Step (optional): Form a subset of samples
Di ∈ D by some subsampling method.

Representation Learning:

1. Build an graph Gi = (V, E ,W) from Di where state i is
connected to state j if i and j are linked temporally in D
and W(i, j) = ai where ai is the action that caused the
transition from i to j in D.

2. Gi=GraphReduction(Gi) in Algorithm 3.

3.1.1 State-abstracted graph for the Get Task
Figure 3 shows the state-abstracted graph for the get task. χget(s)

maps each state s to an abstract state xget ∈ Xget where Xget =
{passenger position, taxi position}. Each vertex in Figure 3 is an
abstract state xget. The four clusters of vertices correspond to a
clustering of the states according to their values for the passen-
ger location. Within each cluster, the darker vertices correspond to
states where the taxi is located on one of the colored grid states.
The light vertices in the graph are not connected to one another but
only to the dark colored vertices. This is because the get subtask
can only execute the navigate and pickup actions, and the navigate
action leads to one of the four colored grid states. Light edges are
caused by the navigate subtask. Dark edges are caused by primi-
tive actions, in this case the pickup action. Each cluster has only
one vertex with a dark edge. This vertex represents the state where
the taxi is located in the same state as the passenger location. The
center vertex represents the terminal state where the passenger is
no longer in the taxi.

3.1.2 Building a Reduced Graph
We describe how state abstractions can be created using a graph

reduction algorithm. The approach uses only properties of the graph

Figure 3: State-abstracted graph of the get subtask.

to construct the abstraction. Our approach to graph reduction re-
quires that the original graph Gi be an edge labeled graph. We de-
fine an edge labeled graph to be G = (V, E, Z, W ), where V is the
set of vertices, E is the edge set, Z is a set of labels over E, and W
is the weight matrix. Gi must be constructed such that Z(v1, v2)
corresponds to the action a that caused the transition between v1

and v2. Gi may be a state or state-abstracted graph.
A reduced graph can be constructed for subtask i from a graph

Gi. Two vertices v1 and v2 correspond to states, or abstract states,
s1 and s2. v1 and v2 can be represented as the same abstract vertex
ṽ, if the state variables for Mi can be divided into two groups Xi

and Yi such that:

• s1 and s2 differ only in their values of Yi

• v1 and v2 are connected to the same set of vertices in the
graph and the labels z ∈ Z for the respective edges are the
same.

v1 and v2 are merged into an abstract vertex ṽ corresponding to the
subset of state variables Xi. The graph reduction algorithm creates
a reduced graph if M does not have an abstraction function χ as-
sociated with H or if χ exists but the state-abstracted graph Gi can
be further compressed. If no nodes are merged, the resulting graph
will be the original graph. Algorithm 3 contains the algorithm used
to transform the state graph into the reduced graph and create basis
functions from the reduced graph.

Algorithm 3 GraphReduction (Go = (Vo, Eo,Zo,Wo))

Vi = Vo

for all v1 ∈ Vi do
for all v2 ∈ Vi do

V1 is the set of vertices such that v′ ∈ V1 =⇒ v1 → v′

V2 is the set of vertices such that v′ ∈ V2 =⇒ v2 → v′

if V1 = V2 and s1 = (xi,y1) and s2 = (xi,y2) and
∀v1 ∈ V1 and v2 ∈ V2 Zo(v1, v

′) = Zo(v2, v
′) then

Merge v1 and v2 into an abstract node ṽ corresponding
to the state variables Xi

∀v′ ∈ V1 Wi(ṽ, v′) = 1
end if

end for
end for
return Gi

3.1.3 Reduced graph for the Get Task

750



Figure 4 shows the reduced graphs for each subtask of the Taxi
task. The reduced graph for the Get task has nine vertices. The
outer four vertices are abstract nodes corresponding to states where
the taxi is not in one of the colored grid locations. The four inner
states correspond to the bottleneck states when the agent is in the
same location as the passenger. The center state represents when
the passenger has been picked up and is in the taxi.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Pass Pos=R

Pass Pos=GPass Pos=B

Pass Pos=Y

Pass Pos=Taxi

Pass Pos=R
Taxi Pos=R

Pass Pos=G
Taxi Pos=G

Pass Pos=B
Taxi Pos=B

Pass Pos=Y
Taxi Pos=Y

Pass Dest=R

Pass Dest=GPass Dest=B

Pass Dest=Y

Pass Pos�Taxi

Pass Dest=R
Taxi Pos=R

Pass Dest=G
Taxi Pos=G

Pass Dest=B
Taxi Pos=B

Pass Dest=Y
Taxi Pos=Y

Pass Pos=TaxiPass Pos�Taxi

Navigate

Get Put

Root

Figure 4: The reduced graphs for the Taxi task.

3.1.4 Generating Hierarchical Basis Functions
The basis functions for a subtask i are automatically constructed

by first generating the local basis functions Φ̄i. Φ̄i is constructed
from the eigenvectors of the graph Laplacian of Gi. A general
overview of spectral decomposition of the Laplacian on undirected
graphs can be found in [2]. A weighted undirected graph is de-
fined as Gu = (V, Eu, W ) where V is a set of vertices, Eu is
a set of edges, and W is the set of weights wij for each edge
(i, j) ∈ Eu. If an edge does not exist between two vertices it is
given a weight of 0. The valency matrix, D, is a diagonal matrix
whose values are the row sums of W . The combinatorial Lapla-
cian is defined as Lu = D − W and the normalized Laplacian is

defined as Lu = D− 1

2 (D − W )D− 1

2 . The set of basis functions,
Φ, are the lowest-order k eigenvectors associated with the smallest
eigenvalues of either Lu or Lu. φ(s) is the embedding of state s
defined by the eigenvectors. These basis functions are concatenated
with basis functions recursively gathered from the child subtasks.
This means that the basis functions are no longer guaranteed to be
linearly independent. If necessary, the bases can be reorthogonal-
ized using Gram-Schmidt or QR decomposition. Figure 5 shows
the second eigenvector of the combinatorial graph Laplacian for
the reduced graph of each subtask. The black horizontal lines dis-
play the reduced graph. The blue vertical lines show the value of
the eigenvector for the particular vertex in the graph.

We define ϕ to be a compression of the state space. Compres-
sions can be abstractions defined by χ, such as those proposed by
Dietterich [5] as well as those from the reduced graph. Compres-

sions can also be defined through spectral graph analysis. For a
given subtask i, we define ϕχi as the compression given by the ab-
straction function χi, ϕG is the compression created by the reduced
graph, and ϕe are the eigenvectors of the graph Laplacian. The ba-
sis functions φi(s) for subtask i and a state s can be written as the
concatenation of the local basis functions with the basis functions
from the child subtasks:

φi(s) = [ϕe(ϕG(ϕχ(s))) | φa(s)∀a ∈ Ai(s)],

where a ∈ Ai(s) is not a primitive action. The embedding of state
s for the get subtask has two parts: the local embedding from the
get subtask and the embedding from the navigate subtask. The lo-
cal embedding of a state s for a subtask is the row of the eigenvector
matrix that corresponds to the abstract state of s.

Since our approach uses reward independent basis functions, the
basis functions from parameterized tasks are only used once. This
approach allows methods, such as graph Laplacian basis functions,
to scale to larger domains. The reduced graph can greatly reduce
the size of the eigen problem that must be solved to create these
basis functions.

Figure 5: Examples of the basis functions for each level of the task
hierarchy. The basis functions pictured are the 2nd eigenvector of
the combinatorial graph Laplacian.

Earlier we gave a generic description of how basis function de-
composition might occur for the Taxi task. Figure 6 shows the
actual decomposition of our recursive basis function construction
approach. For a subtask i the basis functions φi(s) are composed
of two parts: φ̄Gi(s) are the basis functions constructed from the
reduced graph Gi and φa(s) the basis functions from all of the
unique child subtasks a ∈ Ai(s). For example, the basis functions
for the get task are constructed from the basis functions from the
reduced graph Gget and the basis functions from the navigate sub-
task. For the root subtask, the basis functions are constructed from
the reduced graph Groot, the basis functions from the get subtask,
and the basis functions from the put subtask. The basis functions
from the navigate subtask could potentially be used twice by the

751



navigate subtask. Both the get and put subtasks construct their ba-
sis functions using the basis functions from the navigate subtask.
However, the “extra” set of navigate basis functions provide no ad-
ditional information and can be omitted.

root
�(s)

get
�(s)

Groot

�(s)

G
get

�(s)
nav
�(s)

G
nav

�(s)

put
�(s)

G
put

�(s)

Figure 6: The recursive basis function decomposition from our pro-
posed approach.

Osentoski and Mahadevan [9] demonstrated that constructing ba-
sis functions directly in state-action space can significantly speed
up learning. Since actions at a lower level are not available at a
higher level, recursively generating state-action basis functions is
not necessarily straightforward. Thus, our recursive basis function
approach constructs basis functions over the state space.

4. THREE TYPES OF ABSTRACTION
In this section, we analyze our approach to basis function con-

struction for HRL. We start by examining the abstractions created
using the reduced graph approach and demonstrate that our ap-
proach is capable of finding abstractions similar to three types of
abstraction outlined by Dietterich [5].

The first type of abstraction, subtask irrelevance, involves elim-
inating state variables that are irrelevant to a subtask and thus play
no role in the transition probability function or the reward func-
tion for that subtask. The reduced graph construction algorithm
constructs a reduced graph containing this abstraction. If the state
variables in Yi have no bearing on the probability transition func-
tion, they will be irrelevant in terms of connectivity on the graph
and only Xi will be used to represent the state variables.

The second type of abstraction, shielding, results from the struc-
ture of the hierarchy. The value of s does not need to be represented
for a subtask Mi, if for all paths from the root of the hierarchy H
to subtask i there is some subtask j whose termination predicate
βj(s) is true. Our approach automatically finds this representation
because the graph is constructed over states in the set of samples Di

collected during the agent’s initial exploratory period. βj(s) causes
j to terminate and j lies on all paths between subtask i and the root.
Thus, Di cannot contain s, because the agent cannot transition to s
during the execution of this subtask. Therefore, the graph will not
include s, and s will not be represented in the basis functions.

The third type of abstraction results from “funnel actions”, specif-
ically the result distribution irrelevance condition [5]. For a given
subtask i, result distribution irrelevance constructs an abstraction
for all pairs of states s1 and s2, where the state variables can be
partitioned into two sets {Xj , Yj}, such that s1 and s2 only differ
in their values of Yj . The completion function for subtask i can

be represented as an abstract completion function Cπ
i (xj , j), if the

subset of state variables Yj are irrelevant for the result distribution
of child subtask j. Yj is irrelevant for the result distribution of
subtask j, if P π(s′, N |s1, j) = P π(s′, N |s2, j), ∀s′ and N .

Result distribution irrelevance is an abstraction over state-action
pairs. The graph reduction algorithm creates an abstract state for
states s1 and s2 when Ai(s1) = Ai(s2) and the state variables Yi

are irrelevant to connectivity of s to next state vertices s′ for all
a ∈ Ai(s1). The reduced graph abstraction differs from result dis-
tribution irrelevance because it requires the constraint to be true for
all available actions. Additionally, it does not require the probabil-
ities to be identical, just the connectivity within the graph.

In general, abstractions formed by the graph reduction algorithm
are no longer “safe” state abstractions. The graph reduction algo-
rithm uses connectivity within the graph rather than probabilities.
This may lead to abstractions that “overgeneralize”. For example, if
P π(s′, N |s1, j) is slightly different than P π(s′, N |s2, j) but both
values are greater than zero, then both s1 and s2 could potentially
be collapsed into the same abstract vertex. Additionally, the reduc-
tions created by graph reduction algorithm construct “funnel ac-
tion” abstractions, which are unsafe in the discounted reward set-
ting [5]. However, information is regained when basis functions
from child subtasks are used in constructing basis functions. This
information regains some of the “lost” information and allows the
agent to learn appropriate policies.

5. EXPERIMENTAL ANALYSIS
In this section, we experimentally evaluate the approach and

compare it to other techniques.

5.1 Taxi
We evaluated four different techniques on the Taxi task: hierar-

chical Laplacian basis functions (HLBFs), graph Laplacian basis
functions using the more traditional approach, table-lookup and ra-
dial basis functions (RBFs) where the j-th basis function for level
i is defined as φi,j(s) = exp(−(s − μij)

T Σ−1
i,j (s − μi,j)). μij

is the center of the j-th Gaussian kernel of level i and Σi,j is the
width of that Gaussian. The results can be seen in Figure 7. The
results of each experiment are averaged over 30 trials. The results
plot the cumulative reward received by the agent.

Figure 7: Results for the Taxi domain

The function approximation techniques all use a similar number
of basis functions. HLBFs were created using the approach de-
scribed in this paper. The results use the normalized graph Lapla-
cian. The HLBF approach used ten local basis functions for the

752



navigate subtask, nine basis functions for get, and seven basis func-
tions for put.

The basis functions of the graph Laplacian approach were cre-
ated by using the eigenvectors of the directed graph Laplacian [3]
of the state-abstracted graph. This corresponds to the approach to
constructing state-space basis functions for SMDPs described in
[9] except we allowed the approach to leverage the abstractions pro-
vided by the task hierarchy. Ten basis functions were used for all of
the subtasks. It is important to note that while a similar number of
basis functions were used for both of the graph based approaches
the smaller size of the graph in the HLBF approach significantly
reduces the amount of effort required to calculate the eigenvectors.
The recursive approach also uses basis functions from lower levels
in order to obtain a better approximation.

The navigate subtask had a total of 17 basis functions created
by uniformly placing the RBFs with two states between each RBF.
The get and put subtasks had 21 basis functions created by placing
the RBFs uniformly with five states between each RBF. We ex-
perimented with different numbers of RBFs but even doubling the
number of basis functions did not greatly improve performance.
Table 1 lists the number of basis functions used in the experiments
for the taxi experiments. As can be seen in Figure 7, the HLBF ap-
proach and graph Laplacian approach perform significantly better
than the traditional approaches. Additionally, the HLBF approach
performed better than the graph Laplacian approach and required
solving a smaller eigenproblem.

Navigate Get Pickup

HLBF 10 (local) 9 (local) 7 (local)
Construction 19 total 17 total

Graph Laplacian 10 10 10

Table Look Up 25 101 101

Radial Basis Functions 17 21 21

Table 1: Number of basis functions used in the taxi experiments

5.2 Manufacturing Domain
We also evaluated our approach on a simulated manufacturing

shown in Figure 8a. This domain models a manufacturing environ-
ment and is a modified version of the domain in [6]. The agent trav-
els between 33 locations. M1 − M3 are workstations. The agent
carries one part at a time to workstation drop off buffers D1 − D3
and the assembled parts are brought from the workstation pick up
buffers, P1 − P3, to the warehouse. A reward of -5 is given when
the actions Put1-Put3, Pick1-Pick3, Load1-Load3, and Unload ac-
tions are executed illegally. All other actions receive a reward of
-1. The task is complete when the agent drops off one of each type
of assembled part at the warehouse and a reward of 100 is given.

The factored state consists of the number of parts in the pickup
and drop off buffers, if the warehouse contains the three types of
parts, the agent’s location, the agent’s status, and if each assembled
part has been delivered. The flat representation of the state space
consists of 33 locations, 6 buffers of size 2, 7 possible states of
the agent, 2 values for each part in the loading area of the ware-
house, and 2 values for each assembled part in the unloading area
of the warehouse. This gives a total of 33 × 36 × 7 × 23 × 23 =
10, 777, 536 states. There are 14 primitive actions: North, South,
East, West, Put1-Put3, Pick1-Pick3, Load1-Load3, Unload, and
Idle. The total number of parameters that must be learned in the
flat case is 10, 777, 536 × 14 = 161, 663, 040.

Figure 8b defines a task hierarchy. The Nav subtask moves the

M3
M1

M2

P3

D3

P1

D1

P2

D2

Load

Unload

Warehouse

P: Pick up Buffer
D: Drop off Buffer
M: Machine

(a) Manufacturing Domain

Root

DM2DM1 IdleDA1 DA2

UnloadLoad1 Put1 Nav

North East South

Pick2

...

... ...
p: (navload, navput1) p:(navpick2, navunload)

...

West

(b) Hierarchy for the Manufacturing Domain

Figure 8: Manufacturing Domain and Task Hierarchy

agent throughout the grid. DM1-DM3 tasks require picking up a
part from the warehouse and delivering it to the respective machine.
DA1-DA3 tasks involve picking up an assembled part from the cor-
rect machine and delivering it to the warehouse.

We evaluated the recursive basis function approach and com-
pared it to table look up on this task. We terminated learning after
3000 primitive steps were taken in the domain. Our results use the
normalized graph Laplacian. The recursive basis function approach
created 15 local basis functions for the Navigate subtask, 10 basis
functions for subtasks: DM1-DM3, and DA1 - DA3. The root sub-
task has 400 local basis functions. Learning results are shown in
Figure 9. The results of each experiment were averaged over 30
trials. Experiments using the HLBF approach begin to converge
significantly faster than the table lookup approach. The HLBF ap-
proach begins to converge at about 50,000 time steps while the table
look up approach begins to converge at about 100,000 time steps.
Additionally, the learning results for experiments using the HLBF
approach are smoother because the basis functions allow the agent
to generalize when it encounters previously unseen states. RBF and
graph Laplacian approaches are not visualized because they did not
preform well in this large domain.

5.3 Discussion of Results
This paper showed how task hierarchies can enable scaling auto-

matic basis function construction methods to large SMDPs. In ad-
dition, automatically constructing basis functions significantly im-
proves the speed of convergence of HRL methods such as MAXQ.
Basis functions provide generalization over the state space of each
subtask allowing the agent to transfer learning across similar states.
Our HLBF approach has several advantages that help its perfor-
mance. The reduced graph has significantly fewer states and thus
the agent needs to learn fewer values. This is also beneficial for
basis function construction since the size of each basis function

753



Figure 9: Results for the manufacturing domain

(eigenvector) as well as the time required to compute eigenvectors
is significantly reduced.

The HLBF approach is also helpful when the state space is not
fully sampled during basis function construction and out of sample
extension [14] must be used. Out of sample extension techniques
perform best when there are states in the graph that are similar to
the new previously unseen state. They also require an accurate dis-
tance metric to link previously unseen states to states in the graph.
One of the common properties of task hierarchies is that lower level
subtasks are defined over a subset of the state variables. This means
that while the agent may not have observed the state at a higher
level subtask, lower level subtasks are likely to have a representa-
tion for the state.

Another benefit of using the reduced graph is that basis functions
for higher level subtasks are smoother. Due to the properties of the
graphs at more abstract levels and the symmetrization approach,
the eigenvectors are often highly localized to a few states even for
low order eigenvectors. Thus a significant number of eigenvectors
were required for learning. Eigenvectors created from the reduced
graph are often significantly smoother since many of the vertices
are merged, which makes them more useful for approximating the
value function.

6. CONCLUSION AND FUTURE WORK
This paper introduced a new hybrid framework that combines hi-

erarchical learning of representation and control in SMDPs. Specif-
ically, an integrated framework for combining automatic basis func-
tion construction from sample trajectories with a hierarchical re-
inforcement learning method was presented. Basis functions are
recursively constructed by hierarchical spectral analysis of a multi-
level graph induced from an SMDP’s state space, where the task hi-
erarchy is used to form successively more abstract graphs at higher
levels of temporal abstraction. Basis functions are then constructed
by combining eigenvectors of the reduced graph for the subtask as
well as basis functions for lower level child subtasks. We evalu-
ated this approach experimentally and demonstrated that automatic
basis function construction can significantly improve the speed of
learning when compared to traditional function approximation tech-
niques as well as over exact methods.

There are several avenues for future work. One avenue is to ex-
tend this approach to state-action space. A second avenue is to
examine skill transfer especially when the agent has access to au-
tomatically constructed basis functions. Additionally we plan to
extend this work to the multiagent HRL, where the agents could
benefit from sharing learned representations. Another is to exam-

ine multi-scale representations such as diffusion wavelets to auto-
matically construct a hierarchy of basis functions. This approach
may also lead to new insights and new types of skill learning.

7. ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-

dation under grants NSF IIS-0534999 and NSF IIS-0803288. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation. We thank the
members of the Autonomous Learning Lab for their comments and
assistance.

8. REFERENCES
[1] A. Barto and S. Mahadevan. Recent advances in hierarchical

reinforcement learning. Special Issue on Reinforcement
Learning, Discrete Event Systems Jouranl, 13:41–77, 2003.

[2] F. Chung. Spectral Graph Theory. Number 92 in CBMS
Regional Conference Series in Mathematics. American
Mathematical Society, 1997.

[3] F. Chung. Laplacians and the Cheeger inequality for directed
graphs. Annals of Combinatorics, 9:1–19, 2005.

[4] T. Dietterich. The MAXQ method for hierarchical
reinforcement learning. In Proceedings of the Fifteenth
International Conference on Machine Learning, pages
118–126. Morgan Kaufman, 1998.

[5] T. Dietterich. Hierarchical reinforcemnt learning with the
MAXQ value function decomposition. Journal of Artificial
Intelligence Research, 13:277–303, 2000.

[6] M. Ghavamzadeh and S. Mahadevan. Hierarchical
average-reward reinforcement learning. Journal of Machine
Learning Research, 8:2629–2669, 2007.

[7] P. W. Keller, S. Mannor, and D. Precup. Automatic basis
function construction for approximate dynamic
programming and reinforcement learning. In Proceedings of
the 23rd International Conference on Machine Learning,
New York, NY, 2006. ACM Press.

[8] S. Mahadevan. Proto-Value Functions: Developmental
Reinforcement Learning. In Proceedings of the 22nd
International Conference on Machine Learning, pages
553–560, New York, NY, 2005. ACM Press.

[9] S. Osentoski and S. Mahadevan. Learning state-action basis
functions for hierarchical MDPs. In Proceedings of the 24th
International Conference on Machine Learning, 2007.

[10] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman.
Analyzing feature generation for value-function
approximation. In Proceedings of the International
Conference on Machine Learning (ICML), 2007.

[11] R. Parr and S. Russell. Reinforcement learning with
hierarchies of machines. In Advances in Neural Information
Processing Systems 10, pages 1043–1049. MIT Press, 1998.

[12] M. Petrik. An analysis of Laplacian methods for value
function approximation in MDPs. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), 2007.

[13] R. Sutton, D. Precup, and S. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181–211,
1999.

[14] C. K. I. Williams and M. Seeger. Using the Nyström method
to speed up kernel machines. In Advances in Neural
Information Processing Systems 13, 2001.

754


